Tesla, VW, BYD und CO.: E-Autos immer günstiger

Radnabenmotor: Ein Elektromotor, der nicht zentral im Fahrzeug sitzt, sondern direkt am Rad. Er wurde bereits zu Beginn des 20. Jahrhunderts bei E-Autos wie dem Lohner-Porsche genutzt, ist heute aus dem Großserien-Pkw aber verschwunden, unter anderem, weil sein hohes Gewicht an ungünstiger Stelle für Probleme beim Fahrkomfort sorgt und zudem der Platz für die Lenk-Mechanik eng wird. Das wird auch durch die zahlreichen Vorteile aktuell noch nicht aufgefangen. Dazu zählen unter anderem der Bauraumgewinn im Karosseriekörper, der mögliche Verzicht auf Antriebswellen und der Gewinn an Fahrdynamik und Sicherheit durch die mögliche radselektive Regelung der Antriebskraft.

Reichweitenverstärker: In der Regel ein kleiner Verbrennungsmotor, der mit seiner Kraft nicht die Räder antreibt, sondern einen Stromgenerator, der die Akkus während der Fahrt wieder auflädt. So soll auch nach dem Ende des an der Steckdose gezapften Stromvorrats weiteres Fortkommen möglich sein. Dabei handelt es sich allerdings nur um eine Art Notlösung, da der Motor zwar relativ sparsam ausgelegt ist, am Ende aber nur wenig effizient arbeitet. Lange Zeit setze der BMW i3 auf die Technik – seit die Batteriekapazitäten gestiegen sind, verzichten die Münchner jedoch auf den Hilfsmotor. Mazda hingegen will künftig erstmals ein E-Mobil mit Range-Extender auf Wankelmotorbasis ins Programm nehmen.

Erholung: Die Rückgewinnung von kinetischer Energie, die ansonsten beim Bremsen in Form von Wärme verloren gehen würde, ist kein Privileg des Elektroautos. Pkw mit Start-Stopp-System nutzen die Technik bereits seit Jahren. Während der gewonnene Strom beim konventionellen Auto zur Entlastung des Generators/Lichtmaschine genutzt wird, kommt er beim E-Auto direkt dem Antrieb zugute. Allerdings fließt nur ein relativ kleiner Teil der Bremsenergie als Ladeenergie in die Batterie zurück.

Lesen Sie auch  Expertentisch: Frauen in der Baubranche

Schieflast: Meint die ungleichmäßige Belastung des Stromnetzes. Diese soll in Deutschland durch deine Schieflast-Verordnung verhindert werden, die das einphasige Aufladen von Elektroautos stark einschränkt. Anstatt die technisch möglichen rund 7 kW können sich betroffene Fahrzeuge hierzulande legal nur 4,6 kW aus dem Netz holen. Dreiphasig ladende E-Autos hingegen tanken mit bis zu 22 kW, also mehr als viermal so schnell. In anderen Ländern können andere Regeln gelten.

Schnellladen: Der Begriff wird von jedem Hersteller anders benutzt. In den einschlägigen Gesetzestexten zur E-Mobilität findet man die Definition, alle Ladevorgänge mit Leistungen oberhalb von 22 kW könnten als Schnellladung bezeichnet werden. Eine andere mögliche Abgrenzung wäre Wechselstromladen (AC, bis maximal 44 kW) gegen Gleichstromladen (DC, ab 50 kW). In der Praxis macht die Wahl der Definition kaum einen Unterschied, da es hierzulande faktisch kaum Wechselstrom-Ladepunkte mit mehr als 22 kW Leistung gibt. Auch die Zahl der passenden Fahrzeuge ist eher gering. Neben Schnellladen hat sich zuletzt auch der Begriff Ultra-Schnellladen („High Performance Charging“, HPC) eingebürgert. Damit sind meist die DC-Ladesäulen des Betreiber-Konsortiums Ionity gemeint, die bis zu 350 kW liefern – aktuell der Spitzenwert in Europa.

Steckertypen: An der normalen Haushaltssteckdose kann fast jedes E-Auto laden. Darüber hinaus wird es schwierig. Die EU hat sich auf den sogenannte Meneckes-Typ-2-Stecker als Standard an öffentlichen Ladesäulen entschieden, der Stecker wird bereits heute bei den meisten Elektroautos am Ladekabel mitgeliefert. Im europäischen Ausland sind aber aktuell auch andere Steckertypen im Einsatz. Selbst hierzulande uneinheitlich sind die Gleichstrom-Stecker für Schnellladesäulen. Während die deutschen Hersteller auf das CCS-System setzen, nutzen Japaner und Franzosen für ihre Modelle den Chademo-Standard. Die Typen sind nicht kompatibel. Gesetzlich vorgeschrieben werden in Deutschland nur die CCS-Kopplungen.

Stromlieferant: Er beliefert die Ladesäulen mit Strom. Für jede Säule kann immer nur ein Lieferant tätig sein. Das Unternehmen ist nicht notwendigerweise auch Betreiber der Ladesäule (CPO) oder E-Mobilitäts-Provider (EMP).

Lesen Sie auch  Die Gewinne von Alphabet steigen im vierten Quartal vor dem Hintergrund möglicher Entlassungen und strategischer Veränderungen

Kompressor: Die kostenlosen Stromtankstellen von Tesla für Fahrzeuge der eigenen Marke. Das Tesla-System nutzte in Europa zunächst einen modifizierten Typ-2-Stecker, der anders als sein bei anderen Marken genutztes Pendant auch das Laden von Gleichstrom mit bis zu 250 kW erlaubt. Mittlerweile werden Säulen und Fahrzeuge auf den CCS-Standard umgestellt. Die Batterien von Model S, Model X und Co. können an Superchargern innerhalb weniger Minuten aufgeladen werden – früher generell kostenlos, mittlerweile wird modellabhängig nach Minuten oder Kilowattstunden (33 Cent) abgerechnet. Insgesamt betreibt Tesla nach eigenen Angaben in Europa über 1.800 Ladestationen mit insgesamt knapp 16.000 Ladepunkten, meist an wichtigen Magistralen, um seinen Kunden auch längere Reisen im Elektroauto zu ermöglichen. Fahrzeuge anderer Marken können Supercharger nicht nutzen, Tesla-Modelle hingegen können hingegen an Typ-2- und gegebenenfalls an CCS-Ladesäulen tanken.

Der Superkondensator: Im Gegensatz zu Akkus speichern Superkondensatoren Energie elektrisch statt elektrochemisch. Dadurch können sie schneller geladen werden und ihre Energie auch schnell wieder abgeben. Während Superkondensatoren etwa in Blitzgeräten von Fotokameras bereits seit Jahren gängig sind, sind sie im Automobilbau noch relative Neuheiten. Mazda setzt die Stromspeicher etwa für die Bremskraftrückgewinnung ein, in der Formel Eins sind sie bereits Teil des Hybridsystems und stellen Strom zum Beschleunigen zur Verfügung. Volvo experimentiert aktuell damit, aus Superkondensatoren ganze Fahrzeugteile zu fertigen, die dann quasi bauraumneutral in Autos eingesetzt werden können. Allerdings können Superkondensatoren zwar schnell, aber nicht besonders viel Strom laden. Ihre Energiedichte ist extrem gering. Als alleinige Energiequelle für den Fahrzeugantrieb kommen sie daher kaum in Frage; vielmehr werden sie in Zukunft wohl als Ergänzung zu normalen Batterien dienen – vor allem bei der Bremsenergierückgewinnung.

Lesen Sie auch  Facebook down? 7 Möglichkeiten zur Fehlerbehebung, wenn die App nicht funktioniert

Temperaturmanagement: Unter anhaltender Last werden Akkus heiß. Das schlägt nicht nur auf die Leistungsabgabe der Energiespeicher durch, sondern auch auf ihre Fähigkeit, Strom zu speichern. Nach längerer Fahrt oder bei hohen Temperaturen kann es dann schon mal vorkommen, dass an Ladesäulen nicht mehr die volle Leistung abgerufen werden kann. Bekannt geworden ist dieses Phänomen unter dem Namen „Rapidgate“. Einige, aber längst nicht alle E-Mobile verfügen daher über ein Kühlungssystem, das die Batterie auf optimaler Temperatur hält. Andere Hersteller versuchen, dem Problem mit intelligenter Ladesoftware Herr zu werden. Wer viel fährt oder auf schnelles Laden angewiesen ist, sollte trotzdem lieber ein Modell mit aktiver Kühlung wählen.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.